Amide Metallation Reactions: Synthesis and X-Ray Crystal Structures of $[Ru(NHCOCF_3)_2(H_2O)(CO)(PPh_3)_2]$, $[Ph_3P)(OC)Ru(\mu-NHCOC_6H_4-o)(\mu-NHCOPh)(\mu-H)Ru(CO)(PPh_3)_2]$ and $[Ru_2(\mu-CI)(\mu-H)(\mu-NHCOCF_3)_2(PPh_3)_4]$

Michael B. Hursthouse,* a Muhammed A. Mazid, a Stephen D. Robinson* b and Arvind Sahajpal b

^a Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK ^b Department of Chemistry, King's College London, Strand, London WC2R 2LS, UK

Amides, NH₂COR (R = CF₃, Ph), undergo metallation reactions to form mono- and bi-nuclear ruthenium(\parallel) amido complexes, notably [Ru(NHCOCF₃)₂(H₂O)(CO)(PPh₃)₂], the cyclometallated (N,C) benzamido derivative [Ph₃P)(OC)Ru(μ -NHCOC₆H₄-o)(μ -NHCOPh)(μ -H)Ru(CO)(PPh₃)₂] and the quadruply bridged species [Ru₂(μ -Cl)(μ -H)(μ -NHCOCF₃)₂(PPh₃)₄] all of which have been characterised by X-ray diffraction methods.

Whereas the activation and cleavage of C–H bonds by transition metal complexes is now commonplace, and is known to play a key role in many important catalytic processes,¹ the corresponding reactions of N–H bonds are much less familiar.^{2,3} However, as others have noted,³ N–H

bond activation by transition metal complexes in homogeneous solution is of considerable relevance to the important problem of catalytic alkene hydro-amination. Indeed a recently reported catalyst system capable of adding aniline across the double bond of norbornene has been shown

Fig. 1 Molecular structure of 1. Hydrogen atoms are omitted for clarity. Selected distances (Å) and angles (°): P(1)-Ru(1) 2.379(3), P(2)-Ru(1) 2.445(3), O(4)-Ru(1) 2.160(5), N(1)-Ru(1) 2.069(5), N(2)-Ru(1) 2.101(5), C(1)-Ru(1) 1.813(6).

Fig. 2 Molecular structure of 2. Hydrogen atoms are omitted for clarity. Selected distances (Å) and angles (°): Ru(2)-Ru(1) 2.842(4), P(1)-Ru(1) 2.329(5), P(2)-Ru(1) 2.395(5), C(1)-Ru(1) 1.825(13), O(2)-Ru(1) 2.128(10), N(2)-Ru(1) 2.178(11), P(3)-Ru(2) 2.293(5), N(1)-Ru(2) 2.142(12), C(9)-Ru(2) 1.815(12), N(2)-Ru(2) 2.127(9), C(16)-Ru(2) 2.056(15), P(1)-Ru(2) 115.1(2), P(2)-Ru(1)-Ru(2) 139.3(1), C(1)-Ru(1)-Ru(2) 99.8(4), O(2)-Ru(1)-Ru(2) 82.2(3), N(2)-Ru(1)-Ru(2) 47.9(2), P(3)-Ru(2)-Ru(1) 150.1(1), N(1)-Ru(2)-Ru(1) 82.9(3), C(9)-Ru(2)-Ru(1) 120.1(5), N(2)-Ru(2)-Ru(1) 49.5(2), C(16)-Ru(2)-Ru(1) 88.4(4).

to involve oxidative addition of the amine across an iridium(1) centre.⁴

We now report reactions between amides NH_2COR (R = CF₃, Ph) and various ruthenium(II) triphenylphosphine complexes leading to the formation of ruthenium(II) amido products.

Trifluoroacetamide reacts with $[RuH_2(CO)(PPh_3)_3]$ in boiling toluene to form the amido product $[Ru(NHCOCF_3)_2-$ $(H_2O)(CO)(PPh_3)_2$] 1[†] as air-stable pale yellow crystals. The X-ray crystal structure of 1[‡] is shown in Fig. 1 together with selected bond lengths and bond angles. The presence of the aquo ligand within the coordination sphere of 1 attests to the relatively poor chelating capacity of the CF₃CONH⁻ anion. Carbonylation of 1 in boiling toluene affords the dicarbonyl [Ru(NHCOCF₃)₂(CO)₂(PPh₃)₂].

In marked contrast benzamide reacts with $[RuH_2(CO)-(PPh_3)_3]$ under similar conditions to yield the novel binuclear cyclometallated product $[(Ph_3P)(OC)Ru(\mu-NHCOC_6H_4-o)-(\mu-NHCOPh)(\mu-H)Ru(CO)(PPh_3)_2]$ **2**† as air-stable orange needles. The X-ray crystal structure of **2**‡ is shown in Fig. 2 together with bond length and bond angle data.

The formation of products 1 and 2 can be rationalised in terms of a reaction scheme involving a common initial step (1) followed, in the case of the more acidic NH_2COCF_3 , by attack on the second hydride ligand (2), and in the case of the less acidic NH_2COPh , by cyclometallation (3), condensation with a second molecule of the intermediate RuH(NHCOPh)(CO)-

For 2: IR (Nujol mull) v(CO) 1912, 1953 cm⁻¹; v(RuHRu) masked: NMR (CD₂Cl₂) ¹H δ – 11.43 (d of d of d, ²J_{HP} 63.5, 27.5 and 22.7 Hz), RuHRu; ³¹P {¹H} δ 52.55 (d of d, J_{PP} 17 and 4 Hz), 50.08 (d or d, J_{PP} 40 and 4 Hz), 22.70 (d or d, J_{PP} 40 and 17 Hz).

For 3: IR (Nujol mull) v(RuHRu) masked; NMR (CD₂Cl₂) ¹H $\delta - 7.52$ (t of t, ²J_{HP} 49.8 and 15.5 Hz), RuHRu; ³¹P {¹H} δ 51.17 (d of d, ²J_{PP'} 20 Hz, ⁴J_{PP'} 13 Hz), 31.77 (d of d, ²J_{PP'} 20 Hz, ⁴J_{PP'} 13 Hz).

‡ Crystal data for 1: C₄₁H₃₄N₂O₄F₆P₂Ru(CH₃OH)₂ (CH₂Cl₂), M = 1044.75, Triclinic, a = 18.624(2), b = 12.484(2), c = 10.137(1) Å, $\alpha = 92.29(1)$, $\beta = 92.04(1)$, $\gamma = 92.91(1)^\circ$, U = 2350.28 Å³; $D_c = 1.39$ g cm⁻³, Z = 2, space group *P*I Mo-Kα radiation ($\lambda = 0.71069$ Å), μ (Mo-Kα) = 5.079 cm⁻¹, F(000) = 1004. Intensity data were collected in the range $1.5 < \theta < 23.0$ on a CAD4 diffractometer by the method described previously.⁵ The structure was solved by Patterson and Fourier techniques and refined by blocked full-matrix least-squares methods. Hydrogen atoms were included in calculated positions, with isotropic thermal parameters related to those of the parent atoms, and refined in a riding mode. Final R = 0.038 and $R_w = 0.060$ for 5223 unique reflections with $|F_o| > 30(|F_o|)$.

For 2: $C_{70}H_{57}N_2O_3P_3Ru_2$, M = 1285.29, Monoclinic, a = 21.433(5), b = 26.271(9), c = 23.329(3) Å, $\beta = 106.78(2)^\circ$, U = 12576.46 Å³, D_c = 1.354 g cm⁻³, Z = 8, space group I2/a, Mo-K α radiation ($\lambda = 0.71069$ Å), μ (Mo-K α) = 6.04 cm⁻¹, F(000) = 5224. Intensity data were collected on a FAST diffractometer. One hemisphere of data were collected with a detector swing angle of 18° and a crystal-todetector distance of 45 mm. This corresponds to a minimum θ_{max} value of 24°; additional data with a non-spherical distribution, owing to the geometry of this 'flat plate' system were also collected and included. The structure was solved by Patterson and Fourier techniques and refined by blocked full-matrix least-squares methods. Hydrogen atoms were included in calculated positions, with isotropic thermal parameters related to those of the parent atoms, and refined in a riding mode. Final R = 0.058 and $R_w = 0.071$ for 5260 unique reflections with $|F_o| > \sigma(|F_o|)$. For 3: $C_{76}H_{63}N_2O_2F_6P_4CIRu_2$ (0.5CH₂Cl₂, H₂O), M = 1572.31,

For 3: $C_{76}H_{63}N_2O_2F_6P_4ClRu_2$ (0.5CH₂Cl₂, H₂O), M = 1572.31, Orthorhombic, a = 12.542(3), b = 24.069(4), c = 25.081(4) Å, U = 7571.29 Å³, $D_c = 1.376$ g cm⁻³, Z = 4, space group $P2_12_12_1$, Mo-K α radiation ($\lambda = 0.71069$ Å), μ (Mo-K α) = 6.04 cm⁻¹, F(000) = 1004. Intensity data were collected in the range $1.5 < \theta < 23.0$ on a CAD4 diffractometer by the method described previously.⁵ The structure was solved by Patterson and Fourier techniques and refined by blocked full-matrix least-squares methods. Hydrogen atoms were included in calculated positions, with isotropic thermal parameters related to those of the parent atoms, and refined in a riding mode. Final R = 0.038 and $R_w = 0.058$ for 6664 unique reflections with $|F_o| > 6\sigma(|F_o|)$.

All three sets of data were corrected for absorption using the DIFABS[®] procedure. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $^{^{\}dagger}$ Selected spectroscopic data for 1: IR (Nujol mull) v(CO) 1945 cm^{-1}; NMR (CD₂Cl₂) ¹H δ 4.4 (s), NH; ³¹P {¹H} δ 31.5(s).

Fig. 3 Molecular structure of 3. Hydrogen atoms are omitted for clarity. Selected distances (Å) and angles (°): Ru(2)–Ru(1) 2.811(4), Cl(1)–Ru(1) 2.427(4), P(1)–Ru(1) 2.339(4), P(2)–Ru(1) 2.281(4), O(1)–Ru(1) 2.162(7), N(2)–Ru(1) 2.061(8), Cl(1)–Ru(2) 2.429(4), P(3)–Ru(2) 2.298(4), P(4)–Ru(2) 2.336(4), N(1)–Ru(2) 2.041(8), O(2)–Ru(2) 2.153(7), Cl(1)–Ru(1)–Ru(2) 54.7(1), P(1)–Ru(2) 139.8(1), P(2)–Ru(1)–Ru(2) 120.6(2), O(1)–Ru(1)–Ru(2) 82.0(2), N(2)–Ru(1)–Ru(2) 83.4(3), Cl(1)–Ru(2) 139.9(1), N(1)–Ru(2)–Ru(1) 84.3(3), O(2)–Ru(2)–Ru(1) 82.7(2).

 $(PPh_3)_2$ and finally elimination of triphenylphosphine ligands (4).

 $[RuH_2(CO)(PPh_3)_3] + NH_2COR \rightarrow$

 $[RuH(NHCOR)(CO)(PPh_{3})_{3}] + H_{2} (R = CF_{3}, Ph) (1)$

 $[RuH(NHCOCF_3)(CO)(PPh_3)_3] + NH_2COCF_3 + H_2O \rightarrow$

 $[Ru(NHCOCF_3)_2(CO)(H_2O)(PPh_3)_2] + H_2 + PPh_3 \quad (2)$ $[RuH(NHCOPh)(CO)(PPh_3)_3] \rightarrow$

 $[\overline{Ru(NHCOC_6H_4)(CO)(PPh_3)_3}] + H_2 \quad (3)$

J. CHEM. SOC., CHEM. COMMUN., 1991

$$Ru(NHCOC_{6}H_{4})(CO)(PPh_{3})_{3}] + [RuH(NHCOPh)(CO)(PPh_{3})_{3}] \rightarrow [(Ph_{3}P)(OC)Ru)\mu-NHCOC_{6}H_{4}-o)(\mu-NHCOPh)- (\mu-H)Ru(CO)(PPh_{3})_{2}] + 3PPh_{3} \quad (4)$$

Finally trifluoroacetamide reacts with $\text{RuCl}_2(\text{PPh}_3)_3$ in refluxing toluene in the presence of triethylamine to afford the quadruply bridged species $[\text{Ru}_2(\mu\text{-Cl})(\mu\text{-H})-(\mu\text{-NHCOCF}_3)_2(\text{PPh}_3)_4]$ **3**⁺ as air-stable orange crystals. The X-ray crystal structure of **3**[‡] has been determined and is shown in Fig. 3 together with salient bond lengths and angles. Partial conversion of $[\text{RuCl}_2(\text{PPh}_3)_3]$ to $[\text{RuCl}(\text{NHCOCF}_3)(\text{PPh}_3)_3]$ and, *via* $[\text{RuHCl}(\text{PPh}_3)_3]$ to $[\text{RuH}(\text{NHCOCF}_3)(\text{PPh}_3)_3]$, followed by condensation of these two intermediates with elimination of two molecules of triphenylphosphine [eqn. (5)] offers a feasible route to **3**.

 $[\operatorname{RuH}(\operatorname{NHCOCF}_3)(\operatorname{PPh}_3)_3] + [\operatorname{RuCl}(\operatorname{NHCOCF}_3)(\operatorname{PPh}_3)_3] \rightarrow [\operatorname{Ru}_2(\mu-\operatorname{Cl})(\mu-\operatorname{H})(\mu-\operatorname{NHCOCF}_3)_2(\operatorname{PPh}_3)_4] + 2\operatorname{PPh}_3 \quad (5)$

Preliminary studies indicate that osmium and iridium precursors undergo similar reactions with amides.

Received, 10th June 1991; Com. 1/02779D

References

- R. G. Bergman, Science, 1984, 223, 902; R. H. Crabtree, Chem. Rev., 1985, 85, 245; A. H. Janowicz, R. A. Periana, J. M. Buchanan, C. A. Kovac, J. M. Stryker, M. J. Wax and R. G. Bergman, Pure Appl. Chem., 1984, 56, 13; W. D. Jones and F. J. Feher, J. Am. Chem. Soc., 1986, 108, 4814; C. K. Ghosh and W. A. G. Graham, J. Am. Chem. Soc., 1987, 109, 4726; M. Hackett and G. M. Whitesides, J. Am. Chem. Soc., 1988, 110, 1449; W. D. Jones and F. J. Feher, Acc. Chem. Res., 1989, 22, 91.
- 2 D. R. Schaad and C. R. Landis, J. Am. Chem. Soc., 1990, 112, 1628 and references therein.
- 3 F. T. Lapido and J. S. Merola, Inorg. Chem., 1990, 29, 4172.
- 4 A. L. Casalnuovo, J. C. Calabrese and D. Milstein, *Inorg. Chem.*, 1987, 26, 971; A. L. Casalnuovo, J. C. Calabrese and D. Milstein, *J. Am. Chem. Soc.*, 1988, 110, 6738.
- 5 R. A. Jones, M. B. Hursthouse, K. M. A. Malik and G. Wilkinson, J. Am. Chem. Soc., 1979, 101, 4128.