Amide Metallation Reactions: Synthesis and X-Ray Crystal Structures of [Ru(NHCOCF₃)₂(H₂O)(CO)(PPh₃)₂],
[Ph₃P)(OC)Ru(μ-NHCOC₆H₄-*o*)(μ-NHCOPh)(μ-H)Ru(CO)(PPh₃)₂] and $[Ru_2(\mu\text{-}Cl)(\mu\text{-}H)(\mu\text{-}NHCOCF_3)_2(\text{PPh}_3)_4]$

Michael B. Hursthouse,*^a Muhammed A. Mazid,^a Stephen D. Robinson*^b and Arvind Sahajpal^b

^aDepartment of Chemistry, Queen Mary and Westfield College, Mile End Road, London El 4NS, UK ^bDepartment of Chemistry, King's College London, Strand, London WC2R 2LS, UK

Amides, NH₂COR (R = CF₃, Ph), undergo metallation reactions to form mono- and bi-nuclear ruthenium(ii) amido complexes, notably $[Ru(NHCOCF₃)₂(H₂O)(CO)(PPh₃)₂]$, the cyclometallated (N,C) benzamido derivative \sim $[Ph_3P)(OC)Ru(\mu\text{-}NHCOC_6H_4-O)(\mu\text{-}NHCOPh)(\mu\text{-}H)Ru(CO)(PPh_3)_2]$ and the quadruply bridged species $[Ru₂(\mu-Cl)(\mu-H)(\mu-NHCOCF₃)₂(PPh₃)₄]$ all of which have been characterised by X-ray diffraction methods.

Whereas the activation and cleavage of C-H bonds by bond activation by transition metal complexes in transition metal complexes is now commonplace, and is homogeneous solution is of considerable relevance to the
known to play a key role in many important catalytic important problem of catalytic alkene hydro-amination. important problem of catalytic alkene hydro-amination. processes,¹ the corresponding reactions of N-H bonds are Indeed a recently reported catalyst system capable of adding much less familiar.^{2,3} However, as others have noted,³ N-H aniline across the double bond of norbornene has been shown

Fig. 1 Molecular structure of **1.** Hydrogen atoms are omitted for clarity. Selected distances (Å) and angles (°): P(1)–Ru(1) 2.379(3), P(2)–Ru(1) 2.445(3), O(4)–Ru(1) 2.160(5), N(1)–Ru(1) 2.069(5), $N(2)$ -Ru(1) 2.101(5), C(1)-Ru(1) 1.813(6).

Fig. 2 Molecular structure of **2.** Hydrogen atoms are omitted for clarity. Selected distances (Å) and angles (°): $Ru(2)$ - $Ru(1)$ 2.842(4), P(l)-Ru(l) 2.329(5), P(2)-Ru(l) 2.395(5), C(l)-Ru(l) 1.825(13), $O(2)$ -Ru(1) 2.128(10), N(2)-Ru(1) 2.178(11), P(3)-Ru(2) 2.293(5), $N(1)$ -Ru(2) 2.142(12), C(9)-Ru(2) 1.815(12), N(2)-Ru(2) 2.127(9), $C(16)$ -Ru(2) 2.056(15), P(1)-Ru(1)-Ru(2) 115.1(2), P(2)-Ru(1)-Ru(2) 139.3(1), C(1)-Ru(1)-Ru(2) 99.8(4), O(2)-Ru(1)-Ru(2)
82.2(3), N(2)-Ru(1)-Ru(2) 47.9(2), P(3)-Ru(2)-Ru(1) 150.1(1),
N(1)-Ru(2)-Ru(1) 82.9(3), C(9)-Ru(2)-Ru(1) 120.1(5), N(2)- $N(1)-Ru(2)-Ru(1)$ 82.9(3), $C(9)-Ru(2)-Ru(1)$ 120.1(5), $N(2)-Ru(2)-Ru(1)$ 49.5(2), $C(16)-Ru(2)-Ru(1)$ 88.4(4).

to involve oxidative addition of the amine across an iridium(1) centre .4

We now report reactions between amides $NH₂COR (R =$ $CF₃$, Ph) and various ruthenium(II) triphenylphosphine complexes leading to the formation of ruthenium (II) amido products.

Trifluoroacetamide reacts with $\left[\text{RuH}_2(\text{CO})(\text{PPh}_3)_3\right]$ in boiling toluene to form the amido product $\text{Ru(NHCOCF}_3)_{2}$ - $(H₂O)(CO)(PPh₃)$ **1**[†] as air-stable pale yellow crystals. The X-ray crystal structure of **1\$** is shown in Fig. **1** together with selected bond lengths and bond angles. The presence of the aquo ligand within the coordination sphere of **1** attests to the relatively poor chelating capacity of the $CF₃CONH⁻$ anion. Carbonylation of **1** in boiling toluene affords the dicarbonyl $[Ru(NHCOCF₃)₂(CO)₂(PPh₃)₂].$

In marked contrast benzamide reacts with $\text{RuH}_2(\text{CO})$ - $(PPh₃)₃$] under similar conditions to yield the novel binuclear cyclometallated product $[(Ph_3P)(OC)\overline{Ru(\mu\text{-}NHCOC}_6H_4-o)$ - $(\mu$ -NHCOPh)(μ -H)Ru(CO)(PPh₃)₂] **2**[†] as air-stable orange needles. The X-ray crystal structure of **2\$** is shown in Fig. 2 together with bond length and bond angle data.

The formation of products **1** and **2** can be rationalised in terms of a reaction scheme involving a common initial step (1) followed, in the case of the more acidic $NH₂COCF₃$, by attack on the second hydride ligand **(2),** and in the case of the less acidic NH,COPh, by cyclometallation (3), condensation with a second molecule of the intermediate RuH(NHCOPh)(CO)-

t *Selected spectroscopic data* for **1:** IR (Nujol mull) v(C0) 1945 cm-1; NMR (CD₂Cl₂)¹H δ 4.4 (s), NH; ³¹P {¹H} δ 31.5(s).

For **2:** IR (Nujol mull) v(C0) 1912,1953 cm-1; v(RuHRu) masked: NMR (CD_2Cl_2) ¹H δ - 11.43 (d of d of d, ²*J*_{HP} 63.5, 27.5 and 22.7 Hz), RuHRu; ^{31p} {¹H} δ 52.55 (d of d, $J_{PP'}$ 17 and 4 Hz), 50.08 (d or d, $J_{PP'}$ 40 and 4 Hz), 22.70 (d or d, **Jppr** 40 and 17 Hz).

For 3: IR (Nujol mull) v(RuHRu) masked; NMR (CD₂Cl₂) ¹H For 3: IR (Nujol mull) v(RuHRu) masked; NMR (CD₂Cl₂) ¹H δ - 7.52 (t of t, ²J_{HP} 49.8 and 15.5 Hz), RuHRu; ³¹P {¹H} δ 51.17 (d of d, ²J_{pp'} 20 Hz, ⁴J_{pp'} 13 Hz), 31.77 (d of d, ²J_{pp'} 20 Hz, ⁴ 13 Hz).

 $\frac{1}{4}$ *Crystal data* for **1**: C₄₁H₃₄N₂O₄F₆P₂Ru(CH₃OH)₂ (CH₂Cl₂), *M* = 1044.75, Triclinic, $a = 18.624(2)$, $b = 12.484(2)$, $c = 10.137(1)$ Å, $\alpha =$ 92.29(1), β = 92.04(1), γ = 92.91(1)°, *U* = 2350.28 Å³; $D_c = 1.39$ g cm⁻³, $Z = 2$, space group PT Mo-K α radiation ($\lambda = 0.71069$ Å), μ (Mo-K α) = 5.079 cm⁻¹, *F*(000) = 1004. Intensity data were collected in the range 1.5 < θ < 23.0 on a CAD4 diffractometer by the method described previously.⁵ The structure was solved by Patterson and Fourier techniques and refined by blocked full-matrix least-squares methods. Hydrogen atoms were included in calculated positions, with isotropic thermal parameters related to those of the parent atoms, and refined in a riding mode. Final $R = 0.038$ and $R_w = 0.060$ for 5223 unique reflections with $|F_o| > 3\sigma(|F_o|)$.

For 2: $C_{70}H_{57}N_2O_4P_3Ru_2$, $M = 1285.29$, Monoclinic, a = 21.433(5), $b = 26.271(9)$, $c = 23.329(3)$ Å, $\beta = 106.78(2)$ °, $U = 12576.46$ Å³, D_c $= 1.354 \text{ g cm}^{-3}$, $Z = 8$, space group $I2/a$, Mo-K α radiation ($\lambda =$ 0.71069 Å), μ (Mo-K α) = 6.04 cm⁻¹, $F(000)$ = 5224. Intensity data were collected on a FAST diffractometer. One hemisphere of data were collected with a detector swing angle of 18° and a crystal-todetector distance of 45 mm. This corresponds to a minimum θ_{max} value of 24"; additional data with a non-spherical distribution, owing to the geometry of this 'flat plate' system were also collected and included. The structure was solved by Patterson and Fourier techniques and refined by blocked full-matrix least-squares methods. Hydrogen atoms were included in calculated positions, with isotropic thermal parameters related to those of the parent atoms, and refined in a riding mode. Final $R = 0.058$ and $R_w = 0.071$ for 5260 unique reflections with $|F_{\rm o}| > \sigma(|F_{\rm o}|)$.

For **3**: $C_{76}H_{63}N_2O_2F_6P_4CHCl_2$ (0.5CH₂Cl₂, H₂O), *M* = 1572.31, Orthorhombic, $a = 12.542(3)$, $b = 24.069(4)$, $c = 25.081(4)$ Å, $U =$ 7571.29 Å³, $D_c = 1.376$ g cm⁻³, $Z = 4$, space group $P2_12_12_1$, Mo-K α radiation ($\lambda = 0.71069$ Å), μ (Mo-K α) = 6.04 cm⁻¹, $F(000) = 1004$. Intensity data were collected in the range $1.5 < \theta < 23.0$ on a CAD4 diffractometer by the method described previously.⁵ The structure was solved by Patterson and Fourier techniques and refined by blocked full-matrix least-squares methods. Hydrogen atoms were included in calculated positions, with isotropic thermal parameters related to those of the parent atoms, and refined in a riding mode. Final $R = 0.038$ and $R_w = 0.058$ for 6664 unique reflections with $|F_{\rm o}| > 6\sigma(|F_{\rm o}|).$

All three sets of data were corrected for absorption using the DIFABS[®] procedure. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 3 Molecular structure of 3. Hydrogen atoms are omitted for clarity. Selected distances (A) and angles $(°)$: Ru(2)-Ru(1) 2.811(4), $Cl(1)$ -Ru(1) 2.427(4), P(1)-Ru(1) 2.339(4), P(2)-Ru(1) 2.281(4), $O(1)$ -Ru(1) 2.162(7), N(2)-Ru(1) 2.061(8), Cl(1)-Ru(2) 2.429(4), $P(3)$ -Ru(2) 2.298(4), P(4)-Ru(2) 2.336(4), N(1)-Ru(2) 2.041(8), 0(2)-R~(2) 2.153(7), Cl(l)-Ru(l)-Ru(2) 54.7(1), P(l)-Ru(l)-Ru(2) $139.8(1)$, P(2)-Ru(1)-Ru(2) 120.6(2), O(1)-Ru(1)-Ru(2) 82.0(2), N(2)-Ru(l)-Ru(2) 83.4(3), **Cl(l)-Ru(2)-Ru(l)** 54.6(1), P(3)-Ru(2)- $Ru(1)$ 121.1(2), $P(4)$ -Ru(2)-Ru(1) 139.9(1), N(1)-Ru(2)-Ru(1) $84.3(3)$, O(2)-Ru(2)-Ru(1) $82.7(2)$.

 $(PPh₃)₂$ and finally elimination of triphenylphosphine ligands (4).

 $[RuH₂(CO)(PPh₃)₃] + NH₂COR \rightarrow$

 $[RuH(NHCOR)(CO)(PPh_3)_3] + H_2 (R = CF_3, Ph)$ (1)

 $[RuH(NHCOCF₃)(CO)(PPh₃)₃] + NH₂COCF₃ + H₂O \rightarrow$

 $[Ru(NHCOCF₃)₂(CO)(H₂O)(PPh₃)₂] + H₂ + PPh₃ (2)$ $[RuH(NHCOPh)(CO)(PPh₃)₃] \rightarrow$

 $[\text{Ru(NHCOC₆H₄)(CO)(PPh₃)₃] + H₂ (3)$

1148 J. CHEM. SOC., CHEM. COMMUN., 1991

$$
Ru(NHCOC6H4)(CO)(PPh3)3] +[RuH(NHCOPh)(CO)(PPh3)3] \rightarrow
[(Ph₃P)(OC)Ru) μ -NHCOC₆H₄- o)(μ -NHCOPh)-
(μ -H)Ru(CO)(PPh₃)₂] + 3PPh₃ (4)
$$

Finally trifluoroacetamide reacts with $RuCl₂(PPh₃)₃$ in refluxing toluene in the presence of triethylamine to afford
the quadruply bridged species $[Ru_2(\mu-CI)(\mu-H)$ the quadruply bridged species $\text{Ru}_2(\mu\text{-Cl})(\mu\text{-H})$ - $(\mu\text{-NHCOCF}_3)_2(\text{PPh}_3)_4]$ **3**[†] as air-stable orange crystals. The X-ray crystal structure of **3\$** has been determined and is shown in Fig. **3** together with salient bond lengths and angles. Partial conversion of $[RuCl_2(PPh_3)_3]$ to $[RuCl(NHCOCF_3)(PPh_3)_3]$ and, *via* [RuHCl(PPh₃)₃] to [RuH(NHCOCF₃)(PPh₃)₃], followed by condensation of these two intermediates with elimination of two molecules of triphenylphosphine [eqn. *(5)]* offers a feasible route to **3.**

 $[RuH(NHCOCF₃)(PPh₃)₃] + [RuCl(NHCOCF₃)(PPh₃)₃]$ \rightarrow $[Ru_2(\mu-Cl)(\mu-H)(\mu-NHCOCF_3)_2(PPh_3)_4] + 2PPh_3$ (5)

Preliminary studies indicate that osmium and iridium precursors undergo similar reactions with amides.

Received, 10th June 1991; Corn. 1J02779D

References

- R. G. Bergman, *Science,* 1984, 223, 902; R. H. Crabtree, *Chem. Rev.,* 1985, 85. 245; **A.** H. Janowicz, R. **A.** Periana, J. M. Buchanan, C. **A.** Kovac, J. **M.** Stryker, M. J. Wax and R. G. Bergman, *Pure Appl. Chem.,* 1984, **56,** 13; W. D. Jones and F. J. Feher, *J. Am. Chem.* Soc., 1986, 108, 4814; C. K. Ghosh and **W. A.** G. Graham, *J. Am. Chem. SOC.,* 1987,109,4726; **M.** Hackett and G. M. Whitesides, *J. Am. Chem. Soc.*, 1988, 110, 1449; W. D. Jones and F. J. Feher, *Acc. Chem. Res.,* 1989, 22, 91.
- D. R. SchaadandC. R. Landis, *J. Am. Chem. Soc.,* 1990.112,1628 and references therein.
- 3 F. T. Lapido and J. S. Merola, *Inorg. Chem.*, 1990, 29, 4172.
- 4 A. L. Casalnuovo, J. C. Calabrese and D. Milstein, *Inorg. Chem.*, 1987,26, 971; **A.** L. Casalnuovo, J. C. Calabrese and D. Milstein, J. Am. Chem. Soc., 1988, 110, 6738.
- R. **A.** Jones, **M. B.** Hursthouse, K. M. **A.** Malik and G. Wilkinson, *J. Am. Chem. SOC.,* 1979, 101, 4128.